Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2020

Equatorial pitch angle distributions of 1 – 50 keV electrons in Earth s inner magnetosphere: an empirical model based on the Van Allen Probes observations

Using seven years of data from the HOPE instrument on the Van Allen Probes, equatorial pitch angle distributions (PADs) of 1 – 50 keV electrons in Earth s inner magnetosphere are investigated statistically. An empirical model of electron equatorial PADs as a function of radial distance, magnetic local time, geomagnetic activity, and electron energy is constructed using the method of Legendre polynomial fitting. Model results show that most equatorial PADs of 1 – 10s of keV electrons in Earth s inner magnetosphere are pancake PADs, and the lack of butterfly PADs is likely due to their relatively flat or positive flux radial gradients at higher altitudes. During geomagnetically quiet times, more anisotropic distributions of 1 – 10s of keV electrons at dayside than nightside are observed, which could be responsible for moderate chorus wave activities at dayside during quiet times as reported by previous studies. During active times, the anisotropy of 1 – 10s of keV electrons significantly enhances, consistent with the enhanced chorus wave activity during active times and suggesting the critical role of 1 – 10s of keV electrons in generating chorus waves in Earth s inner magnetosphere. Different enhanced anisotropy patterns of different energy electrons are also observed during active times: at R>∼4 RE, keV electrons are more anisotropic at dawn to noon, while 10s of keV electrons have larger anisotropy at midnight to dawn. These differences, combined with the statistical distribution of chorus waves shown in previous studies, suggest the differential roles of electrons with different energies in generating chorus waves with different properties. This article is protected by copyright. All rights reserved.

Zhao, H.; Friedel, R.; Chen, Y.; Baker, D.; Li, X.; Malaspina, D.; Larsen, B.; Skoug, R.; Funsten, H.; Reeves, G.; Boyd, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028322

Pitch angle distribution; energetic electrons; Earth s inner magnetosphere; Anisotropy; Chorus wave; statistical analysis; Van Allen Probes

2018

The global statistical response of the outer radiation belt during geomagnetic storms

Using the total radiation belt electron content calculated from Van Allen Probe phase space density (PSD), the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using PSD reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and non-adiabatic effects, and revealing a clear modality and repeatable sequence of events in storm-time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ) dependent behaviour in the seed (150 MeV/G), relativistic (1000 MeV/G), and ultra-relativistic (4000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, whilst the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ-dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

Murphy, Kyle; Watt, C.; Mann, Ian; Rae, Jonathan; Sibeck, David; Boyd, A.; Forsyth, C.; Turner, D.; Claudepierre, S.; Baker, D.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 04/2018

YEAR: 2018     DOI: 10.1002/2017GL076674

Geomagnetic storms; magnetospheric dynamics; Radiation belts; Solar Wind-Magnetosphere Coupling; statistical analysis; Van Allen Probes

2014

Optimization of deep-space Ka-band link schedules

Downlink scheduling methods that minimize either contact time or data latency are described. For deep-space missions these two methods yield very different schedules. Optimal scheduling algorithms are straightforward for ideal mission scenarios. In practice, additional schedule requirements preclude a tractable optimal algorithm. In lieu of an optimal solution, an iterative sub-optimal algorithm is described. These methods are motivated in part by a need to balance mission risk, which increases with data latency, and mission cost, which increases with contact time. Cost is reduced by delaying downlink contacts until higher data rates are available. Previous work described optimization of individual Ka-band contacts in the presence of time-varying and statistical link parameters. The present study builds on previous work by using a downlink capacity profile to optimize the downlink schedule over the duration of a mission. The downlink schedule for the NASA mission Solar Probe Plus is used as a case study.

Adams, Norman; Copeland, David; Mick, Alan; Pinkine, Nickalaus;

Published by:       Published on: 03/2014

YEAR: 2014     DOI: 10.1109/AERO.2014.6836351

optimisation; scheduling; space communication links; statistical analysis



  1